Subdifferentials of perturbed distance functions in Banach spaces

Jin-Hua Wang • Chong Li • Hong-Kun Xu

Received: 5 May 2009 / Accepted: 6 May 2009 / Published online: 6 June 2009
© Springer Science+Business Media, LLC. 2009

Abstract

In general Banach space setting, we study the perturbed distance function $d_{S}^{J}(\cdot)$ determined by a closed subset S and a lower semicontinuous function $J(\cdot)$. In particular, we show that the Fréchet subdifferential and the proximal subdifferential of a perturbed distance function are representable by virtue of corresponding normal cones of S and subdifferentials of $J(\cdot)$.

Keywords Subdifferential • Fréchet subdifferential • Proximal subdifferential • Perturbed optimization problem • Well-posedness

Mathematics Subject Classification (2000) 49J52 • 46N10 • 49K27

1 Introduction

Let X be a real Banach space endowed with norm $\|\cdot\|$ and let S be a nonempty closed subset of X. Let $J: S \rightarrow \mathbb{R}$ be a lower semicontinuous function. We define the perturbed distance

[^0]function $d_{S}^{J}: X \rightarrow \mathbb{R}$ by
\[

$$
\begin{equation*}
d_{S}^{J}(x)=\inf _{s \in S}\{\|x-s\|+J(s)\} \quad \text { for each } x \in X \tag{1.1}
\end{equation*}
$$

\]

For $x \in X$, the perturbed optimization problem is to find an element $z_{0} \in S$ such that

$$
\begin{equation*}
\left\|x-z_{0}\right\|+J\left(z_{0}\right)=d_{S}^{J}(x) \tag{1.2}
\end{equation*}
$$

which is denoted by $\min _{J}(x, S)$. Any point z_{0} satisfying (1.2) (if it exists) is called a solution of the problem $\min _{J}(x, S)$. In particular, if $J \equiv 0$, then the perturbed distance function d_{S}^{J} and the perturbed optimization problem $\min _{J}(x, S)$ reduce to distance function d_{S} and the well-known best approximation problem, respectively.

The perturbed optimization problem $\min _{J}(x, S)$ was presented and investigated by Baranger in [1] and Bidaut in [5]. The existence results have been applied to optimal control problems governed by partial differential equations, see for example, [1-5, 14, 18, 27]. Under the assumption that J is bounded from below, Baranger proved in [1] that if X is a uniformly convex Banach space then the set of all $x \in X$ for which the problem $\min _{J}(x, S)$ has a solution is a dense G_{δ}-subset of X, which extends Stechkin's results in [30] on the best approximation problem. Since then, this problem has been extensively studied, see for example [5, 14, 22, 23, 29]. In particular, Cobzas [15] extended Baranger's result to the setting of reflexive Kadec Banach space; while Ni [28] relaxed the reflexivity assumption made in Cobzas' result.

Distance functions play an important role in optimization and variational analysis (see $[7,8,10,24,25]$). For example, distance functions are fundamental to multiplier existence theorems in constrained optimization [8], and algorithms for solving nonlinear systems of equations and nonlinear programs (see [7,10]). In general, distance functions of nonempty closed subsets in Banach spaces are nonconvex and so the study of various subdifferentials of distance functions have received a lot of attention (see $[6,9,12,13,16,17,31]$). In particular, Burke et al [9] developed the Clarke subdifferentials of distance functions in terms of corresponding normal cones of associated subsets and the similar result for the Fréchet subdifferentials is due to Kruger [21] and Ioffe [20] (see also [6]). The proximal subdifferentials of distance functions are presented in [6] in terms of corresponding normal cones of the associated subsets. Extensions of these results to the setting of a minimal time function determined by a closed convex set and a closed set have been done recently, see for example [19,26] and references therein.

The purpose of this paper is to explore both the Fréchet subdifferentials and the proximal subdifferentials of perturbed distance functions $d_{S}^{J}(\cdot)$. Our main results extend the corresponding ones in $[6,9,24,25]$ from distance functions to general perturbed distance functions.

2 Preliminaries

Let X be a normed vector space with norm denoted by $\|\cdot\|$. Let X^{*} denote the topological dual of X. We use $\boldsymbol{B}(x, r)$ to denote the open ball centered at x with radius $r>0$, and $\langle\cdot, \cdot\rangle$ to denote the pairing between X^{*} and X. Let $\mathbb{B}\left(\right.$ resp. $\left.\mathbb{B}^{*}\right)$ denote the closed unit ball of
X (resp. X^{*}) centered at the origin. Let S be a nonempty closed subset of X. We use δ_{S} to denote the indicator function of S, i.e.,

$$
\delta_{S}(x)= \begin{cases}0 & x \in S \\ +\infty & \text { otherwise. }\end{cases}
$$

Write $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ and let $f: X \rightarrow \mathbb{R}$ be a proper lower semicontinuous (1.s.c.) function. The effective domain of f is denoted by

$$
\mathrm{D}(f)=\{x \in X \mid f(x)<+\infty\} .
$$

The notions in the following definition are well-known (see for example $[6,20,21]$).

Definition 2.1 Let $x \in \mathrm{D}(f)$.

(1) The Fréchet subdifferential $\partial^{F} f(x)$ of f at x is defined by

$$
\partial^{F} f(x)=\left\{x^{*} \in X^{*} \left\lvert\, \liminf _{y \rightarrow x} \frac{f(y)-f(x)-\left\langle x^{*}, y-x\right\rangle}{\|y-x\|} \geq 0\right.\right\} .
$$

(2) The proximal subdifferential $\partial^{P} f(x)$ of f at x is defined by

$$
\partial^{P} f(x)=\left\{x^{*} \in X^{*} \left\lvert\, \liminf _{y \rightarrow x} \frac{f(y)-f(x)-\left\langle x^{*}, y-x\right\rangle}{\|y-x\|^{2}}>-\infty\right.\right\} .
$$

Let $x \in D(f)$ Clearly, an element $x^{*} \in \partial^{F} f(x)$ if and only if, for any $\varepsilon>0$ there exists $\rho>0$ such that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x)+\varepsilon\|y-x\| \text { for all } y \in \boldsymbol{B}(x, \rho) . \tag{2.1}
\end{equation*}
$$

It is also clear that $x^{*} \in \partial^{P} f(x)$ if and only if, there exist $\rho, \sigma>0$ such that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x)+\sigma\|y-x\|^{2} \text { for all } y \in \boldsymbol{B}(x, \rho) . \tag{2.2}
\end{equation*}
$$

Hence we have that $\partial^{P} f(x) \subset \partial^{F} f(x)$. Furthermore, in the case when f is convex, we have that

$$
\partial^{P} f(x)=\partial^{F} f(x)=\partial f(x) \text { for each } x \in \mathrm{D}(f)
$$

where $\partial f(x)$ is the subdifferential of f at x (in the sense of convex analysis) defined by

$$
\partial f(x)=\left\{x^{*} \in X^{*} \mid\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x), \forall y \in X\right\} .
$$

In particular, for $x \in S$, the Fréchet subdifferential and the proximal subdifferential of the indicator function of S at x are called the Fréchet normal cone and respectively the proximal normal cone of S at x, i.e.,

$$
N_{S}^{F}(x)=\partial^{F} \delta_{S}(x) \quad \text { and } \quad N_{S}^{P}(x)=\partial^{P} \delta_{S}(x)
$$

In the case when S is convex, the Fréchet normal cone and the proximal normal cone of S at x coincide with the normal cone $N_{S}(x)$ of S at x, which is defined by

$$
N_{S}(x)=\left\{x^{*} \in X^{*} \mid\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y \in S\right\} .
$$

Moreover, by definitions, the assertion in the following remark is direct.

Remark 2.1 Let $f: X \rightarrow \mathbb{R}$ be a Lipschitz continuous function with modulus $L>0$. Then we have

$$
\begin{equation*}
\partial^{P} f(x) \subseteq L \mathbb{B}^{*} \text { and } \partial^{F} f(x) \subseteq L \mathbb{B}^{*} \text { for each } x \in X \tag{2.3}
\end{equation*}
$$

3 Subdifferentials of perturbed distance functions

Note that J is only defined on S. For the whole section, we make the following definition:

$$
\left(J+\delta_{S}\right)(x)=\left\{\begin{array}{l}
J(x) x \in S \\
+\infty \text { otherwise } .
\end{array}\right.
$$

Recall that the perturbed distance function is defined by

$$
d_{S}^{J}(x)=\inf _{s \in S}\{\|x-s\|+J(s)\} \quad \text { for each } x \in X .
$$

By [29] we have that

$$
\begin{equation*}
\left|d_{S}^{J}(y)-d_{S}^{J}(x)\right| \leq\|y-x\| \quad \text { for any } x, y \in X . \tag{3.1}
\end{equation*}
$$

This and (2.3) imply that

$$
\begin{equation*}
\partial^{P} d_{S}^{J}(x) \subseteq \mathbb{B}^{*} \text { and } \partial^{F} d_{S}^{J}(x) \subseteq \mathbb{B}^{*} \text { for each } x \in X \tag{3.2}
\end{equation*}
$$

In particular, if S is convex, then we have

$$
\begin{equation*}
\partial d_{S}^{J}(x) \subseteq \mathbb{B}^{*} \tag{3.3}
\end{equation*}
$$

Following [23,29], let S_{0} denote the set of all points $x \in S$ such that x is a solution of the problem $\min _{J}(x, S)$, i.e.,

$$
\begin{equation*}
S_{0}=\left\{x \in S \mid d_{S}^{J}(x)=J(x)\right\} . \tag{3.4}
\end{equation*}
$$

For the remainder of the present paper, we assume that S_{0} is non-empty.

3.1 The convex case

In this subsection we always assume that S is a closed convex subset of X and $J: S \rightarrow \mathbb{R}$ is convex. Then it is easy to verify that $d_{S}^{J}(\cdot)$ is convex on X. The main theorem of this subsection is as follows.

Theorem 3.1 Suppose that $S \subset X$ is closed convex and $J: S \rightarrow \mathbb{R}$ is convex. The following assertions hold:
(1) If $x \in S$, then we have

$$
\begin{equation*}
\partial d_{S}^{J}(x) \supseteq \partial\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} . \tag{3.5}
\end{equation*}
$$

(2) If $x \in S_{0}$, then we have

$$
\begin{equation*}
\partial d_{S}^{J}(x)=\partial\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} \tag{3.6}
\end{equation*}
$$

Proof

(1) Let x^{*} belong to the set on the right-hand side of (3.5). Then $\left\|x^{*}\right\| \leq 1$ and

$$
\begin{equation*}
\left\langle x^{*}, s-x\right\rangle \leq J(s)-J(x) \text { for each } s \in S . \tag{3.7}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\|y-s\| \geq\left\langle x^{*}, y-s\right\rangle=\left\langle x^{*}, y-x\right\rangle-\left\langle x^{*}, s-x\right\rangle \tag{3.8}
\end{equation*}
$$

holds for each $y \in X$ and $s \in S$. Hence, we have from (3.7) and (3.8) that

$$
\begin{equation*}
\|y-s\|+J(s) \geq\left\langle x^{*}, y-x\right\rangle+J(x) \text { for each } y \in X \text { and } s \in S . \tag{3.9}
\end{equation*}
$$

Since $d_{S}^{J}(x) \leq J(x)$ (as $\left.x \in S\right)$, it follows that

$$
\begin{equation*}
d_{S}^{J}(y)-d_{S}^{J}(x) \geq \inf _{s \in S}\{\|y-s\|+J(s)\}-J(x) \quad \text { for each } y \in X \tag{3.10}
\end{equation*}
$$

This together with (3.9) implies that

$$
\begin{aligned}
d_{S}^{J}(y)-d_{S}^{J}(x) & \geq \inf _{s \in S}\{\|y-s\|+J(s)\}-J(x) \\
& \geq \inf _{s \in S}\left\{\left\langle x^{*}, y-x\right\rangle+J(x)\right\}-J(x) \\
& =\left\langle x^{*}, y-x\right\rangle .
\end{aligned}
$$

Hence, $x^{*} \in \partial d_{S}^{J}(x)$ and (3.5) is proved.
(2) Let $x \in S_{0}$. By (3.3), one sees that $\partial d_{S}^{J}(x) \subset \mathbb{B}^{*}$. Hence we only need to prove that

$$
\begin{equation*}
\partial d_{S}^{J}(x) \subseteq \partial\left(J+\delta_{S}\right)(x) \tag{3.11}
\end{equation*}
$$

To do this, let $x^{*} \in \partial d_{S}^{J}(x)$. Then, for each $y \in X$ we have

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq d_{S}^{J}(y)-d_{S}^{J}(x)=\inf _{s \in S}\{\|y-s\|+J(s)\}-J(x) \tag{3.12}
\end{equation*}
$$

where the equality holds because of (3.4). Thus, for each $y \in S$ we have that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq J(y)-J(x)=J(y)+\delta_{S}(y)-\left(J(x)+\delta_{S}(x)\right) . \tag{3.13}
\end{equation*}
$$

Note that (3.13) is trivial for any $y \notin S$. Hence $x^{*} \in \partial\left(J+\delta_{S}\right)(x)$ and the proof of (3.11) is complete.

In particular, if $J \equiv 0$, then $S=S_{0}$. Thus, from Theorem 3.1, we get the following corollary, which was shown in [9,11,24,25].

Corollary 3.1 Let $J \equiv 0$. There holds

$$
\partial d_{S}(x)=N_{S}(x) \cap \mathbb{B}^{*} \text { for each } x \in S
$$

3.2 The nonconvex case

This subsection is devoted to the study of the Fréchet subdifferential and the proximal subdifferential for the case when S is nonconvex. To this end we first introduce the notion of the
well-posedness (cf. [23]). Recall that a sequence $\left\{z_{n}\right\} \subseteq S$ is a minimizing sequence of the problem $\min _{J}(x, S)$ if

$$
\lim _{n \rightarrow+\infty}\left(\left\|x-z_{n}\right\|+J\left(z_{n}\right)\right)=\inf _{z \in S}(\|x-z\|+J(z)) .
$$

Recall also that the problem $\min _{J}(x, S)$ is well-posed if $\min _{J}(x, S)$ has a unique solution and every minimizing sequence of the problem $\min _{J}(x, S)$ converges to this solution. Before starting our main theorems, we need some lemmas.

Lemma 3.1 Let $\varepsilon>0, \rho>0$, and let $x \in S_{0}$. Suppose that $\min _{J}(x, S)$ is well-posed. Then there exists $r \in(0,1)$ such that for any $z \in \boldsymbol{B}(x, r)$ and $y \in S$ if

$$
\begin{equation*}
\|z-y\|+J(y) \leq d_{S}^{J}(z)+\varepsilon\|z-x\| \tag{3.14}
\end{equation*}
$$

holds, then we have

$$
\begin{equation*}
\|y-x\|<\rho \tag{3.15}
\end{equation*}
$$

Proof We proceed by contradiction. Suppose on the contrary that, for each $n=1,2, \cdots$, there exist $z_{n} \in \boldsymbol{B}\left(x, \frac{1}{n}\right)$ and $y_{n} \in S$ such that

$$
\begin{equation*}
\left\|z_{n}-y_{n}\right\|+J\left(y_{n}\right) \leq d_{S}^{J}\left(z_{n}\right)+\varepsilon\left\|z_{n}-x\right\| \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{n}-x\right\| \geq \rho . \tag{3.17}
\end{equation*}
$$

Thus, we have $\lim _{n \rightarrow+\infty}\left\|z_{n}-x\right\|=0$. Note that

$$
d_{S}^{J}\left(z_{n}\right) \leq\left\|x-y_{n}\right\|+J\left(y_{n}\right) \leq\left\|x-z_{n}\right\|+\left\|z_{n}-y_{n}\right\|+J\left(y_{n}\right) .
$$

This together with (3.16) implies that

$$
\begin{align*}
d_{S}^{J}\left(z_{n}\right) & \leq\left\|x-y_{n}\right\|+J\left(y_{n}\right) \\
& \leq\left\|x-z_{n}\right\|+d_{S}^{J}\left(z_{n}\right)+\varepsilon\left\|z_{n}-x\right\| \tag{3.18}\\
& =d_{S}^{J}\left(z_{n}\right)+(1+\varepsilon)\left\|z_{n}-x\right\| .
\end{align*}
$$

Since $d_{S}^{J}(\cdot)$ is continuous, it follows that

$$
\begin{equation*}
d_{S}^{J}(x) \leq \lim _{n \rightarrow+\infty}\left(\left\|x-y_{n}\right\|+J\left(y_{n}\right)\right) \leq d_{S}^{J}(x) \tag{3.19}
\end{equation*}
$$

i.e., $\left\{y_{n}\right\}$ is a minimizing sequence of the problem $\min _{J}(x, S)$. Noting that $x \in S_{0}$ and $\min _{J}(x, S)$ is well-posed, we obtain

$$
\lim _{n \rightarrow+\infty} y_{n}=x
$$

which contradicts (3.17). This completes the proof of the lemma.
Lemma 3.2 Let $\varepsilon>0$. Let $x \in S_{0}$, and let $y \in X$ be such that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq d_{S}^{J}(y)-d_{S}^{J}(x)+\varepsilon\|y-x\| . \tag{3.20}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq J(y)+\delta_{S}(y)-\left(J(x)+\delta_{S}(x)\right)+\varepsilon\|y-x\|, \tag{3.21}
\end{equation*}
$$

Proof Let $y \in X$. Since (3.21) is trivial if $y \notin S$, we may assume that $y \in S$. As $x \in S_{0}$, we have from (3.4) that

$$
d_{S}^{J}(y)-d_{S}^{J}(x)+\varepsilon\|y-x\|=\inf _{s \in S}\{\|y-s\|+J(s)\}-J(x)+\varepsilon\|y-x\| .
$$

Combining this with (3.20) gives that

$$
\begin{aligned}
\left\langle x^{*}, y-x\right\rangle & \leq \inf _{s \in S}\{\|y-s\|+J(s)\}-J(x)+\varepsilon\|y-x\| \\
& \leq J(y)-J(x)+\varepsilon\|y-x\| \\
& =J(y)+\delta_{S}(y)-\left(J(x)+\delta_{S}(x)\right)+\varepsilon\|y-x\|,
\end{aligned}
$$

which shows (3.21) and completes the proof.
Lemma 3.3 Let $L, \varepsilon_{1}, \varepsilon_{2} \in(0,1)$. Let $x \in S_{0}, z, y \in X$, and let $x^{*} \in \mathbb{B}^{*}$ be such that

$$
\begin{array}{r}
\left\langle x^{*}, y-x\right\rangle \leq J(y)-J(x)+\varepsilon_{1}\|y-x\|, \\
\|z-y\|+J(y) \leq d_{S}^{J}(z)+\varepsilon_{2}\|z-x\| \tag{3.23}
\end{array}
$$

and

$$
\begin{equation*}
|J(y)-J(x)| \leq L\|y-x\| . \tag{3.24}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\|y-x\|<\frac{3}{1-L}\|z-x\| \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x^{*}, z-x\right\rangle \leq d_{S}^{J}(z)-d_{S}^{J}(x)+\left(\varepsilon_{2}+\frac{3 \varepsilon_{1}}{1-L}\right)\|z-x\| . \tag{3.26}
\end{equation*}
$$

Proof By (3.23) and the definition of $d_{S}^{J}(z)$ we have

$$
\begin{aligned}
\|y-x\| & \leq\|y-z\|+\|z-x\| \\
& \leq d_{S}^{J}(z)-J(y)+\varepsilon_{2}\|z-x\|+\|z-x\| \\
& \leq J(x)-J(y)+\left(2+\varepsilon_{2}\right)\|z-x\| .
\end{aligned}
$$

Using (3.24), we get that

$$
\|y-x\| \leq L\|y-x\|+\left(2+\varepsilon_{2}\right)\|z-x\| .
$$

Hence,

$$
\begin{equation*}
\|y-x\| \leq \frac{\varepsilon_{2}+2}{1-L}\|z-x\|<\frac{3}{1-L}\|z-x\| \tag{3.27}
\end{equation*}
$$

which implies that (3.25) holds. To show (3.26), we use (3.22) and (3.27) to conclude that

$$
\begin{align*}
\left\langle x^{*}, y-x\right\rangle & \leq J(y)-J(x)+\varepsilon_{1}\|y-x\| \\
& \leq J(y)-J(x)+\frac{3 \varepsilon_{1}}{1-L}\|z-x\| . \tag{3.28}
\end{align*}
$$

Since $\left\|x^{*}\right\| \leq 1$, it follows from (3.23) that

$$
\begin{equation*}
\left\langle x^{*}, z-y\right\rangle \leq\|z-y\| \leq d_{S}^{J}(z)-J(y)+\varepsilon_{2}\|z-x\| . \tag{3.29}
\end{equation*}
$$

This together with (3.28) implies that

$$
\begin{aligned}
\left\langle x^{*}, z-x\right\rangle & =\left\langle x^{*}, z-y\right\rangle+\left\langle x^{*}, y-x\right\rangle \\
& \leq d_{S}^{J}(z)-J(y)+\varepsilon_{2}\|z-x\|+J(y)-J(x)+\frac{3 \varepsilon_{1}\| \| z-x \|(3.30)}{1-L}\| \| \\
& =d_{S}^{J}(z)-d_{S}^{J}(x)+\left(\varepsilon_{2}+\frac{3 \varepsilon_{1}}{1-L}\right)\|z-x\|,
\end{aligned}
$$

where the last equality holds because of (3.4). Thus, inequality (3.26) holds, which completes the proof of the lemma.

Recall that J satisfies the center locally Lipschitz condition at x if there exist $\rho>0$ and $L>0$ such that

$$
|J(y)-J(x)| \leq L\|y-x\| \quad \text { for each } y \in \boldsymbol{B}(x, \rho) .
$$

We define center locally Lipschitz constant $L_{x} \in[0,+\infty]$ at x by

$$
L_{x}=\inf _{\rho>0} \sup _{y \in \boldsymbol{B}(x, \rho)} \frac{|J(y)-J(x)|}{\|y-x\|} .
$$

Then, it is clear that J satisfies center locally Lipschitz condition at x if and only if $L_{x}<+\infty$.
Theorem 3.2 Let $x \in S_{0}$. The following assertions hold.
(1) We have

$$
\begin{equation*}
\partial^{F} d_{S}^{J}(x) \subset \partial^{F}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} . \tag{3.31}
\end{equation*}
$$

(2) If $\min _{J}(x, S)$ is well-posed and $L_{x}<1$, then we have

$$
\begin{equation*}
\partial^{F} d_{S}^{J}(x)=\partial^{F}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} . \tag{3.32}
\end{equation*}
$$

Proof
(1) Let $x^{*} \in \partial^{F} d_{S}^{J}(x)$. Then $x^{*} \in \mathbb{B}^{*}$ by (3.2). Thus, to prove (3.31), it is sufficient to prove that $x^{*} \in \partial^{F}\left(J+\delta_{S}\right)(x)$. To proceed, let $\varepsilon>0$. Then there exists $\rho>0$ such that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq d_{S}^{J}(y)-d_{S}^{J}(x)+\varepsilon\|y-x\| \text { for each } y \in \boldsymbol{B}(x, \rho) . \tag{3.33}
\end{equation*}
$$

Thus, by Lemma 3.2, it follows that
$\left\langle x^{*}, y-x\right\rangle \leq J(y)+\delta_{S}(y)-\left(J(x)+\delta_{S}(x)\right)+\varepsilon\|y-x\| \quad$ for each $y \in \boldsymbol{B}(x, \rho)$, which implies that $x^{*} \in \partial^{F}\left(J+\delta_{S}\right)(x)$. Hence, condition (3.31) holds.
(2) Assume that $\min _{J}(x, S)$ is well-posed and $L_{x}<1$. To show (3.32), it is sufficient to prove that

$$
\begin{equation*}
\partial^{F}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} \subset \partial^{F} d_{S}^{J}(x) . \tag{3.34}
\end{equation*}
$$

To proceed, take $x^{*} \in \partial^{F}\left(J+\delta_{S}\right)(x)$ be such that $\left\|x^{*}\right\| \leq 1$. Let $\varepsilon>0$, and let $L_{x}<L<1$. Set

$$
\varepsilon_{0}=\min \left\{1, \frac{(1-L) \varepsilon}{4-L}\right\} .
$$

Then, $\varepsilon_{0}>0$ because $L<1$. Moreover, there exists $\rho>0$ satisfying

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq J(y)-J(x)+\varepsilon_{0}\|y-x\| \quad \text { for each } y \in S \cap \boldsymbol{B}(x, \rho) \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
|J(y)-J(x)| \leq L\|y-x\| \quad \text { for each } y \in \boldsymbol{B}(x, \rho) . \tag{3.36}
\end{equation*}
$$

By Lemma 3.1 (applied to ε_{0} in place of ε), there exists $r \in(0,1)$ such that for each $z \in B(x, r)$ and $y \in S$, one has hat

$$
\begin{equation*}
\|z-y\|+J(y) \leq d_{S}^{J}(z)+\varepsilon_{0}\|z-x\| \Longrightarrow\|y-x\|<\rho . \tag{3.37}
\end{equation*}
$$

Take $z \in \boldsymbol{B}(x, r) \backslash\{x\}$. By the definition of $d_{S}^{J}(z)$, we can take $y_{z} \in S$ such that

$$
\begin{equation*}
\left\|z-y_{z}\right\|+J\left(y_{z}\right) \leq d_{S}^{J}(z)+\varepsilon_{0}\|z-x\| . \tag{3.38}
\end{equation*}
$$

By (3.37), we have

$$
\begin{equation*}
\left\|y_{z}-x\right\|<\rho . \tag{3.39}
\end{equation*}
$$

Combining this with (3.35) and (3.36) yields that

$$
\begin{equation*}
\left\langle x^{*}, y_{z}-x\right\rangle \leq J\left(y_{z}\right)-J(x)+\varepsilon_{0}\left\|y_{z}-x\right\| \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|J\left(y_{z}\right)-J(x)\right| \leq L\left\|y_{z}-x\right\| . \tag{3.41}
\end{equation*}
$$

Then assumptions in Lemma 3.3 are satisfied with $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{0}$ and $y=y_{z}$, and Lemma 3.3 allows us to conclude that

$$
\begin{align*}
\left\langle x^{*}, z-x\right\rangle & \leq d_{S}^{J}(z)-d_{S}^{J}(x)+\left(\varepsilon_{0}+\frac{3 \varepsilon_{0}}{1-L}\right)\|z-x\| \tag{3.42}\\
& \leq d_{S}^{J}(z)-d_{S}^{J}(x)+\varepsilon\|z-x\|,
\end{align*}
$$

which shows that $x^{*} \in \partial^{F} d_{S}^{J}(x)$ as $\epsilon>0$ is arbitrary. Thus, (3.34) is proved and the proof of the theorem is complete.

Theorem 3.3 Let $x \in S_{0}$. The following assertions hold.
(1) We have

$$
\begin{equation*}
\partial^{P} d_{S}^{J}(x) \subset \partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} . \tag{3.43}
\end{equation*}
$$

(2) If $\min _{J}(x, S)$ is well-posed and $L_{x}<1$, then we have

$$
\begin{equation*}
\partial^{P} d_{S}^{J}(x)=\partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} \tag{3.44}
\end{equation*}
$$

Proof
(1) Let $x^{*} \in \partial^{P} d_{S}^{J}(x)$. Then, there exist two positive numbers $\sigma, \rho>0$ such that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq d_{S}^{J}(y)-d_{S}^{J}(x)+\sigma\|y-x\|^{2} \text { for each } y \in \boldsymbol{B}(x, \rho) . \tag{3.45}
\end{equation*}
$$

Let $y \in \boldsymbol{B}(x, \rho)$ and set $\varepsilon=\sigma\|y-x\|$. Thus, (3.45) implies that (3.20) in Lemma 3.2 holds. Hence, we can use Lemma 3.2 to conclude that

$$
\begin{aligned}
\left\langle x^{*}, y-x\right\rangle & \leq J(y)+\delta_{S}(y)-\left(J(x)+\delta_{S}(x)\right)+\varepsilon\|y-x\| \\
& =J(y)+\delta_{S}(y)-\left(J(x)+\delta_{S}(x)\right)+\sigma\|y-x\|^{2},
\end{aligned}
$$

which implies that $x^{*} \in \partial^{P}\left(J+\delta_{S}\right)(x)$. Note that $x^{*} \in \mathbb{B}^{*}$ follows directly from (3.2). Hence, $x^{*} \in \partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*}$ and we arrive at (3.43).
(2) Assume that $\min _{J}(x, S)$ is well-posed and $L_{x}<1$. Let $x^{*} \in \partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*}$, and let $L_{x}<L<1$. Then $\left\|x^{*}\right\| \leq 1$ and there exist two postive numbers $\rho, \sigma>0$ such that

$$
\begin{equation*}
\left\langle x^{*}, y-x\right\rangle \leq J(y)-J(x)+\sigma\|y-x\|^{2} \text { for each } y \in S \cap \boldsymbol{B}(x, \rho) \tag{3.46}
\end{equation*}
$$

and

$$
\begin{equation*}
|J(y)-J(x)| \leq L\|y-x\| \text { for each } y \in \boldsymbol{B}(x, \rho) . \tag{3.47}
\end{equation*}
$$

By Lemma 3.1 (with $\varepsilon=1$), there exists $0<r<1$ such that for each $z \in B(x, r)$ and $y \in S$

$$
\begin{equation*}
\|z-y\|+J(y) \leq d_{S}^{J}(z)+\|z-x\| \Longrightarrow\|y-x\|<\rho . \tag{3.48}
\end{equation*}
$$

Let $z \in \boldsymbol{B}(x, r) \backslash\{x\}$. In view of the definition of $d_{S}^{J}(z)$, one can take $y_{z} \in S$ such that

$$
\begin{equation*}
\left\|z-y_{z}\right\|+J\left(y_{z}\right) \leq d_{S}^{J}(z)+\|z-x\|^{2} \tag{3.49}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|z-y_{z}\right\|+J\left(y_{z}\right) \leq d_{S}^{J}(z)+\|z-x\| . \tag{3.50}
\end{equation*}
$$

By (3.48), we have

$$
\begin{equation*}
\left\|y_{z}-x\right\|<\rho . \tag{3.51}
\end{equation*}
$$

This, together with (3.46) and (3.47), implies that

$$
\begin{equation*}
\left\langle x^{*}, y_{z}-x\right\rangle \leq J\left(y_{z}\right)-J(x)+\sigma\left\|y_{z}-x\right\|^{2} \tag{3.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|J\left(y_{z}\right)-J(x)\right| \leq L\left\|y_{z}-x\right\| . \tag{3.53}
\end{equation*}
$$

Write

$$
\begin{equation*}
\varepsilon_{1}=\sigma\left\|y_{z}-x\right\| \quad \text { and } \quad \varepsilon_{2}=\|z-x\| . \tag{3.54}
\end{equation*}
$$

Thus, (3.49), (3.52) and (3.53) imply that assumptions in Lemma 3.3 are satisfied with $\varepsilon_{1}, \varepsilon_{2}$ given by (3.54) and $y=y_{z}$. Hence, Lemma 3.3 allows us to conclude that

$$
\begin{equation*}
\left\|y_{z}-x\right\|<\frac{3}{1-L}\|z-x\| \tag{3.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x^{*}, z-x\right\rangle \leq d_{S}^{J}(z)-d_{S}^{J}(x)+\left(\varepsilon_{2}+\frac{3 \varepsilon_{1}}{1-L}\right)\|z-x\|, \tag{3.56}
\end{equation*}
$$

which together with (3.54) yields that

$$
\left\langle x^{*}, z-x\right\rangle \leq d_{S}^{J}(z)-d_{S}^{J}(x)+\left(1+\frac{3 \sigma}{(1-L)^{2}}\right)\|z-x\|^{2} .
$$

Hence, $x^{*} \in \partial^{P} d_{S}^{J}(x)$ and so we arrive at $\partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} \subset \partial^{P} d_{S}^{J}(x)$. This completes the proof of the theorem.

Lemma 3.4 Let $x \in S_{0}$. Assume that $J(\cdot)$ satisfies the center Lipschitz condition on S at x with Lipschitz constant $0 \leq L<1$, i.e.,

$$
\begin{equation*}
\|J(y)-J(x)\| \leq L\|y-x\| \quad \text { for each } y \in S . \tag{3.57}
\end{equation*}
$$

Then $\min _{J}(x, S)$ is well-posed.
Proof Since $x \in S_{0}, x$ is a solution of $\min _{J}(x, S)$. Below, we show that every minimizing sequence of $\min _{J}(x, S)$ converges to x. Granting this, x is the unique solution of $\min _{J}(x, S)$; hence $\min _{J}(x, S)$ is well-posed. To proceed, let $\left\{z_{n}\right\} \subset S$ be a minimizing sequence of $\min _{J}(x, S)$, i.e.,

$$
\lim _{n \rightarrow+\infty}\left(\left\|x-z_{n}\right\|+J\left(z_{n}\right)\right)=\inf _{s \in S}\{\|x-s\|+J(s)\}=J(x) .
$$

Thus for each $\varepsilon>0$ there exists a positive integer N such that if $n \geq N$, then

$$
\left\|x-z_{n}\right\|+J\left(z_{n}\right) \leq J(x)+\varepsilon .
$$

This, together with (3.57), gives that

$$
\left\|x-z_{n}\right\| \leq J(x)-J\left(z_{n}\right)+\varepsilon \leq L\left\|x-z_{n}\right\|+\varepsilon,
$$

which implies that

$$
\left\|x-z_{n}\right\| \leq \frac{\varepsilon}{1-L}
$$

Consequently we arrive at

$$
\lim _{n \rightarrow+\infty}\left\|x-z_{n}\right\|=0 .
$$

This completes the proof of the lemma.
By Lemma 3.4, the next corollary follows directly from Theorems 3.2 and 3.3.
Corollary 3.2 Let $x \in S_{0}$. Then we have

$$
\partial^{F} d_{S}^{J}(x) \subset \partial^{F}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} \text { and } \quad \partial^{P} d_{S}^{J}(x) \subset \partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*}
$$

Furthermore, if $J(\cdot)$ satisfies the center Lipschitz constant at x with Lipschitz constant $0 \leq$ $L<1$, then we have

$$
\partial^{F} d_{S}^{J}(x)=\partial^{F}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} \text { and } \partial^{P} d_{S}^{J}(x)=\partial^{P}\left(J+\delta_{S}\right)(x) \cap \mathbb{B}^{*} .
$$

In particular, letting $J \equiv 0$, we get the following corollary, which was proved in [6].
Corollary 3.3 Let $x \in S$. Then we have

$$
\partial^{F} d_{S}(x)=N_{S}^{F}(x) \cap \mathbb{B}^{*} \text { and } \partial^{P} d_{S}(x)=N_{S}^{P}(x) \cap \mathbb{B}^{*} .
$$

We end this paper with a remark about Lipschitz conditions.

Remark 3.1 Recall that a function $J: X \rightarrow \mathbb{R}$ satisfies the locally Lipschitz condition at x if there exist $L>0$ and $\rho>0$ such that

$$
|J(y)-J(z)| \leq L\|y-z\| \text { for each } y, z \in \boldsymbol{B}(x, \rho)
$$

Obviously, the locally Lipschitz condition implies the center locally Lipschitz condition. However, the converse is not true, in general, as shown in the following example.

Example 3.1 Let $X=\mathbb{R}$, and let $J: X \rightarrow \mathbb{R}$ be defined by

$$
J(x)= \begin{cases}\frac{1}{2} x \sin \frac{\pi}{x} & x \neq 0 \\ 0 & x=0 .\end{cases}
$$

Let $x=0$. Then $J(\cdot)$ satisfies the center Lipschitz condition on X at $x=0$ with Lipschitz constant $L=\frac{1}{2}$ but it does not satisfy the locally Lipschitz condition at $x=0$.

In fact, take $y_{k}=\frac{1}{k}$ and $x_{k}=\frac{2}{2 k+1}$ for each $k=1,2, \cdots$. Then

$$
\left|J\left(y_{k}\right)-J\left(x_{k}\right)\right|=\frac{1}{2}\left|y_{k} \sin \frac{\pi}{y_{k}}-x_{k} \sin \frac{\pi}{x_{k}}\right|=\frac{1}{2 k+1} .
$$

Thus, we get

$$
\frac{\left|J\left(y_{k}\right)-J\left(x_{k}\right)\right|}{\left|y_{k}-x_{k}\right|}=k
$$

which implies that $J(\cdot)$ dose not satisfy the local Lipschitz condition at $x=0$. Note that for each $y \in X$ and $y \neq 0$ we have

$$
|J(y)-J(0)|=\frac{1}{2}\left|y \sin \frac{\pi}{y}\right| \leq \frac{1}{2}\|y-0\|,
$$

which shows that $J(\cdot)$ satisfies the center Lipschitz condition on X at $x=0$ with Lipschitz constant $L=\frac{1}{2}$.

Acknowledgments The research of the first and second authors were partially supported by NNSF of China (grants $10671175 ; 10731060$). The third author was partially supported by NSC $97-2628-\mathrm{M}-110-003-\mathrm{MY} 3$ (Taiwan).

References

1. Baranger, J.: Existence de solution pour des problemes d'optimisation nonconvexe. C. R. Acad. Sci. Paris. 274, 307-309 (1972) (in French)
2. Baranger, J.: Existence de solutions pour des problems d'optimisation non-convexe. J. Math. Pures Appl. 52, 377-405 (1973) (in French)
3. Baranger, J., Temam, R.: Problemes d'optimisation non-convexe dependants d'un parametre. In: Aubin, J.P. (ed) Analyse Non-convexe et ses Applications, pp. 41-48. Springer-Verlag, Berlin/New York (1974) (in French)
4. Baranger, J, Temam, R.: Nonconvex optimization problems depending on a parameter. SIAM J. Control 13, 146-152 (1975)
5. Bidaut, M.F.: Existence theorems for usual and approximate solutions of optimal control problem. J. Optim. Theory Appl. 15, 393-411 (1975)
6. Bounkhel, M., Thibault, L.: On various notions of regularity of sets in nonsmooth analysis. Nonlinear Anal. 48, 223-246 (2002)
7. Burke, J.V.: A sequential quadratic programming method for potentially infeasible mathematical programs. J. Math. Anal. Appl. 139, 319-351 (1989)
8. Burke, J.V.: An Exact Penalization Viewpoint of Constrained Optimization. Technical Report ANL/MCS-TM-95, Mathematics and Computer Science Division, Argonne National Laboratories, Argonne, IL 60439 (1987)
9. Burke, J.V., Ferris, M.C., Qian, M.: On the Clarke subdifferential of the distance function of a closed set. J. Math. Anal. Appl. 166, 199-213 (1992)
10. Burke, J.V., Han, S.P.: A Gauss-Newton approach to solving generalized inequalities. Math. Oper. Res. 11, 632-643 (1986)
11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
12. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)
13. Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower- C^{2} property. J. Convex. Anal. 2, 117-144 (1995)
14. Cobzas, S.: Nonconvex optimization problems on weakly compact subsets of Banach spaces. Anal. Numér. Théor. Approx. 9, 19-25 (1980)
15. Cobzas, S.: Generic existence of solutions for some perturbed optimization problems. J. Math. Anal. Appl. 243, 344-356 (2000)
16. Colombo, G., Wolenski, P.R.: Variational analysis for a class of minimal time functions in Hilbert spaces. J. Convex. Anal. 11, 335-361 (2004)
17. Colombo, G., Wolenski, P.R.: The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space. J. Global Optim. 28, 269-282 (2004)
18. Dontchev, A.L., Zolezzi, T.: Well Posed Optimization Problems. Lecure Notes in Math, Vol. 1543. Springer-Verlag, Berlin (1993)
19. He, Y., Ng, K.F.: Subdifferentials of a minimum time function in Banach spaces. J. Math. Anal. Appl. 321, 896-910 (2006)
20. Ioffe, A.D.: Proximal analysis and approximate subdifferentials. J. Lond. Math. Soc. 2, 175-192 (1990)
21. Kruger, A.Y.: ε-semidifferentials and ε-normal elements, Depon. VINITI, No. 1331-81, Moscow 1981 (in Russian)
22. Lebourg, G.: Perturbed optimization problems in Banach spaces. Bull. Soc. Math. Fr. 60, 95-111 (1979)
23. Li, C., Peng, L.H.: Porosity of perturbed optimization problems in Banach spaces. J. Math. Anal. Appl. 324, 751-761 (2006)
24. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330. Springer-Verlag, Berlin (2006)
25. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331. Springer-Verlag, Berlin (2006)
26. Mordukhovich, B.S., Nam, N.M.: Limiting subgradients of minimal time functions in Banach spaces. J. Global Optim. (to appear)
27. Murat, F.: Un contre-example pour le problem du controle dans les coefficients. C. R. Acad. Sci. Ser. A 273, 708-711 (1971) (in French)
28. Ni, R.X.: Generic solutions for some perturbed optimization problem in non-reflexive Banach space. J. Math. Anal. Appl. 302, 417-424 (2005)
29. Peng, L.H., Li, C., Yao, J.C.: Well-posedness of a class of perturbed optimization problems in Banach spaces. J. Math. Anal. Appl. 346, 384-394 (2008)
30. Stechkin, S.B.: Approximative properties of sets in linear normed spaces. Rev. Math. Pures. Appl. 8, 5-18 (1963) (in Russian)
31. Wolenski, P.R., Zhuang, Y.: Proximal analysis and the minimal time function. SIAM J. Control Optim. 36, 1048-1072 (1998)

[^0]: J.-H. Wang (\boxtimes)

 Department of Mathematics, Zhejiang University of Technology, 310032 Hangzhou, People's Republic of China
 e-mail: wjh@zjut.edu.cn
 C. Li

 Department of Mathematics, Zhejiang University, 310027 Hangzhou, People's Republic of China e-mail: cli@zju.edu.cn
 H.-K. Xu

 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan e-mail: xuhk@math.nsysu.edu.tw

